Coverage for source/model/model_blue_prints/vggception_cnn_blue_print.py: 100%

54 statements  

« prev     ^ index     » next       coverage.py v7.8.0, created at 2025-07-30 20:59 +0000

1# model/model_blue_prints/vggception_cnn_blue_print.py 

2 

3# global imports 

4import math 

5from tensorflow.keras import layers, Model 

6from typing import Optional 

7 

8# local imports 

9from source.model import BluePrintBase, ModelAdapterBase, TFModelAdapter, \ 

10 Vgg16Block, XceptionBlock 

11 

12class VGGceptionCnnBluePrint(BluePrintBase): 

13 """ 

14 Blueprint for creating a hybrid CNN architecture combining VGG and Xception patterns. 

15 

16 This class implements a model blueprint that constructs a neural network with a 

17 combined architecture inspired by VGG16 and Xception networks. It's designed to 

18 process both spatial and non-spatial features by separating the input vector 

19 and processing them through different network components before combining them. 

20 """ 

21 

22 def __init__(self, number_of_filters: int = 32, cnn_squeezing_coeff: int = 2, 

23 dense_squeezing_coeff: int = 2, dense_repetition_coeff: int = 1, 

24 filters_number_coeff: int = 2) -> None: 

25 """ 

26 Initializes the VGGceptionCnnBluePrint with the specified configuration parameters. 

27 

28 Parameters: 

29 number_of_filters (int): Initial number of convolutional filters. 

30 cnn_squeezing_coeff (int): Factor by which CNN dimensions are reduced. 

31 dense_squeezing_coeff (int): Factor by which dense layer sizes are reduced. 

32 dense_repetition_coeff (int): Number of dense layers of the same size to use. 

33 filters_number_coeff (int): Factor by which filter count increases in convolutional layers. 

34 """ 

35 

36 self.__number_of_filters = number_of_filters 

37 self.__cnn_squeezing_coeff = cnn_squeezing_coeff 

38 self.__dense_squeezing_coeff = dense_squeezing_coeff 

39 self.__dense_repetition_coeff = dense_repetition_coeff 

40 self.__filters_number_coeff = filters_number_coeff 

41 

42 def instantiate_model(self, input_shape: tuple[int, int], output_length: int, spatial_data_shape: tuple[int, int], 

43 number_of_filters: Optional[int] = None, cnn_squeezing_coeff: Optional[int] = None, 

44 dense_squeezing_coeff: Optional[int] = None, dense_repetition_coeff: Optional[int] = None, 

45 filters_number_coeff: Optional[int] = None) -> ModelAdapterBase: 

46 """ 

47 Creates and returns a hybrid VGG-Xception CNN model according to specified parameters. 

48 

49 The method constructs a neural network that: 

50 1. Separates the input into spatial and non-spatial components 

51 2. Processes the spatial data through VGG16 and Xception blocks 

52 3. Flattens the CNN output and concatenates with non-spatial features 

53 4. Passes the combined features through a series of dense layers 

54 5. Produces a softmax output for classification 

55 

56 Parameters: 

57 input_shape (tuple[int, int]): Shape of the input tensor 

58 output_length (int): Number of output classes/actions 

59 spatial_data_shape (tuple[int, int]): Rows and columns to reshape spatial data 

60 number_of_filters (int): Initial number of convolutional filters 

61 cnn_squeezing_coeff (int): Factor by which CNN dimensions are reduced 

62 dense_squeezing_coeff (int): Factor by which dense layer sizes are reduced 

63 dense_repetition_coeff (int): Number of dense layers of the same size to use 

64 filters_number_coeff (int): Factor by which filter count increases in convolutional layers 

65 

66 Returns: 

67 Model: Keras model implementing the hybrid VGG-Xception architecture to be compiled further. 

68 """ 

69 

70 if number_of_filters is None: 

71 number_of_filters = self.__number_of_filters 

72 if cnn_squeezing_coeff is None: 

73 cnn_squeezing_coeff = self.__cnn_squeezing_coeff 

74 if dense_squeezing_coeff is None: 

75 dense_squeezing_coeff = self.__dense_squeezing_coeff 

76 if dense_repetition_coeff is None: 

77 dense_repetition_coeff = self.__dense_repetition_coeff 

78 if filters_number_coeff is None: 

79 filters_number_coeff = self.__filters_number_coeff 

80 

81 spatial_data_rows, spatial_data_cols = spatial_data_shape 

82 spatial_data_length = spatial_data_rows * spatial_data_cols 

83 

84 input_vector = layers.Input((1, input_shape[0])) 

85 reshaped_input_vector = layers.Reshape((input_shape[0],))(input_vector) 

86 spatial_part = layers.Lambda(lambda x: x[:, :spatial_data_length])(reshaped_input_vector) 

87 non_spatial_part = layers.Lambda(lambda x: x[:, spatial_data_length:])(reshaped_input_vector) 

88 reshaped_spatial_part = layers.Reshape((spatial_data_rows, spatial_data_cols, 1))(spatial_part) 

89 

90 cnn_part = Vgg16Block([(3, 1), (3, 1), (2, 1)], 

91 [number_of_filters, number_of_filters])(reshaped_spatial_part) 

92 cnn_part = layers.BatchNormalization()(cnn_part) 

93 

94 nr_of_xceptions_blocks = int(math.ceil(math.log(spatial_data_rows // 2, cnn_squeezing_coeff))) 

95 for _ in range(nr_of_xceptions_blocks): 

96 number_of_filters *= filters_number_coeff 

97 cnn_part = XceptionBlock([(3, 1), (3, 1), (3, 1), (1, 1)], 

98 [number_of_filters, number_of_filters, number_of_filters], 

99 [(cnn_squeezing_coeff, 1), (cnn_squeezing_coeff, 1)])(cnn_part) 

100 cnn_part = layers.BatchNormalization()(cnn_part) 

101 

102 flatten_cnn_part = layers.Flatten()(cnn_part) 

103 concatenated_parts = layers.Concatenate()([flatten_cnn_part, non_spatial_part]) 

104 

105 closest_smaller_power_of_coeff = int(math.pow(dense_squeezing_coeff, 

106 int(math.log(concatenated_parts.shape[-1], 

107 dense_squeezing_coeff)))) 

108 dense = layers.Dense(closest_smaller_power_of_coeff, activation='relu')(concatenated_parts) 

109 dense = layers.BatchNormalization()(dense) 

110 

111 number_of_nodes = closest_smaller_power_of_coeff // dense_squeezing_coeff 

112 nr_of_dense_layers = int(math.log(closest_smaller_power_of_coeff, dense_squeezing_coeff)) 

113 for _ in range(nr_of_dense_layers): 

114 for _ in range(dense_repetition_coeff): 

115 dense = layers.Dense(number_of_nodes, activation='relu')(dense) 

116 dense = layers.BatchNormalization()(dense) 

117 number_of_nodes //= dense_squeezing_coeff 

118 if int(math.log(number_of_nodes, 10)) == int(math.log(output_length, 10)) + 1: 

119 dense = layers.Dropout(0.3)(dense) 

120 elif int(math.log(number_of_nodes, 10)) == int(math.log(output_length, 10)): 

121 break 

122 

123 output = layers.Dense(output_length, activation='softmax')(dense) 

124 

125 return TFModelAdapter(Model(inputs = input_vector, outputs = output))